steepest-descent procedure - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

steepest-descent procedure - перевод на русский

OPTIMIZATION ALGORITHM
Steepest descent; Gradient ascent; Gradient descent method; Steepest ascent; Gradient Descent; Gradient descent optimization; Gradient-based optimization; Gradient descent with momentum
  • An animation showing the first 83 iterations of gradient descent applied to this example. Surfaces are [[isosurface]]s of <math>F(\mathbf{x}^{(n)})</math> at current guess <math>\mathbf{x}^{(n)}</math>, and arrows show the direction of descent. Due to a small and constant step size, the convergence is slow.
  • Gradient Descent in 2D
  • Illustration of gradient descent on a series of [[level set]]s
  • Fog in the mountains
  • The steepest descent algorithm applied to the [[Wiener filter]]<ref>Haykin, Simon S. Adaptive filter theory. Pearson Education India, 2008. - p. 108-142, 217-242</ref>

steepest-descent procedure      

математика

метод наиболее крутого спуска

steepest ascent         

математика

наискорейший подъем

крутое восхождение

steepest descent         

общая лексика

наискорейший спуск

линия наиболее крутого спуска

Определение

descent
¦ noun
1. the action of descending.
a downward slope.
2. a person's origin or nationality: the settlers were of Cornish descent.
transmission by inheritance.
3. (descent on) a sudden violent attack.
Origin
ME: from OFr. descente, from descendre (see descend).

Википедия

Gradient descent

In mathematics, gradient descent (also often called steepest descent) is a first-order iterative optimization algorithm for finding a local minimum of a differentiable function. The idea is to take repeated steps in the opposite direction of the gradient (or approximate gradient) of the function at the current point, because this is the direction of steepest descent. Conversely, stepping in the direction of the gradient will lead to a local maximum of that function; the procedure is then known as gradient ascent. It is particularly useful in machine learning for minimizing the cost or loss function. Despite its simplicity and efficiency, gradient descent has some limitations and variations have been developed to overcome these limitations. Overall, gradient descent has revolutionized various fields and continues to be an active area of research and development.

Gradient descent is generally attributed to Augustin-Louis Cauchy, who first suggested it in 1847. Jacques Hadamard independently proposed a similar method in 1907. Its convergence properties for non-linear optimization problems were first studied by Haskell Curry in 1944, with the method becoming increasingly well-studied and used in the following decades.

Как переводится steepest-descent procedure на Русский язык